Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic stability of pseudo-simple heteroclinic cycles in R^4 (1509.07277v1)

Published 24 Sep 2015 in math.DS, math-ph, math.MP, and nlin.CD

Abstract: Robust heteroclinic cycles in equivariant dynamical systems in R4 have been a subject of intense scientific investigation because, unlike heteroclinic cycles in R3, they can have an intricate geometric structure and complex asymptotic stability properties that are not yet completely understood. In a recent work, we have compiled an exhaustive list of finite subgroups of O(4) admitting the so-called simple heteroclinic cycles, and have identified a new class which we have called pseudo-simple heteroclinic cycles. By contrast with simple heteroclinic cycles, a pseudo-simple one has at least one equilibrium with an unstable manifold which has dimension 2 due to a symmetry. Here, we analyse the dynamics of nearby trajectories and asymptotic stability of pseudo-simple heteroclinic cycles in R4.

Summary

We haven't generated a summary for this paper yet.