Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Analysis of Joint-Sparse Recovery from Multiple Measurements and Prior Information via Convex Optimization (1509.06655v2)

Published 22 Sep 2015 in cs.IT and math.IT

Abstract: We address the problem of compressed sensing with multiple measurement vectors associated with prior information in order to better reconstruct an original sparse matrix signal. $\ell_{2,1}-\ell_{2,1}$ minimization is used to emphasize co-sparsity property and similarity between matrix signal and prior information. We then derive the necessary and sufficient condition of successfully reconstructing the original signal and establish the lower and upper bounds of required measurements such that the condition holds from the perspective of conic geometry. Our bounds further indicates what prior information is helpful to improve the the performance of CS. Experimental results validates the effectiveness of all our findings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.