A square root map on Sturmian words (1509.06349v1)
Abstract: We introduce a square root map on Sturmian words and study its properties. Given a Sturmian word of slope $\alpha$, there exists exactly six minimal squares in its language (a minimal square does not have a square as a proper prefix). A Sturmian word $s$ of slope $\alpha$ can be written as a product of these six minimal squares: $s = X_12 X_22 X_32 \cdots$. The square root of $s$ is defined to be the word $\sqrt{s} = X_1 X_2 X_3 \cdots$. The main result of this paper is that that $\sqrt{s}$ is also a Sturmian word of slope $\alpha$. Further, we characterize the Sturmian fixed points of the square root map, and we describe how to find the intercept of $\sqrt{s}$ and an occurrence of any prefix of $\sqrt{s}$ in $s$. Related to the square root map, we characterize the solutions of the word equation $X_12 X_22 \cdots X_n2 = (X_1 X_2 \cdots X_n)2$ in the language of Sturmian words of slope $\alpha$ where the words $X_i2$ are minimal squares of slope $\alpha$. We also study the square root map in a more general setting. We explicitly construct an infinite set of non-Sturmian fixed points of the square root map. We show that the subshifts $\Omega$ generated by these words have a curious property: for all $w \in \Omega$ either $\sqrt{w} \in \Omega$ or $\sqrt{w}$ is periodic. In particular, the square root map can map an aperiodic word to a periodic word.