Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rough Bilinear Singular Integrals (1509.06099v2)

Published 21 Sep 2015 in math.CA

Abstract: We study the rough bilinear singular integral, introduced by Coifman and Meyer , $$ T_\Omega(f,g)(x)=p.v. ! \int_{\mathbb R{n}}! \int_{\mathbb R{n}}! |(y,z)|{-2n} \Omega((y,z)/|(y,z)|)f(x-y)g(x-z) dydz, $$ when $\Omega $ is a function in $Lq(\mathbb S{2n-1})$ with vanishing integral and $2\le q\le \infty$. When $q=\infty$ we obtain boundedness for $T_\Omega$ from $L{p_1}(\mathbb Rn)\times L{p_2}(\mathbb Rn)$ to $ Lp(\mathbb Rn) $ when $1<p_1, p_2<\infty$ and $1/p=1/p_1+1/p_2$. For $q=2$ we obtain that $T_\Omega$ is bounded from $L{2}(\mathbb Rn)\times L{ 2}(\mathbb Rn)$ to $ L1(\mathbb Rn) $. For $q$ between $2$ and infinity we obtain the analogous boundedness on a set of indices around the point $(1/2,1/2,1)$. To obtain our results we introduce a new bilinear technique based on tensor-type wavelet decompositions.

Summary

We haven't generated a summary for this paper yet.