Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Statistical Theory of Deep Learning via Proximal Splitting (1509.06061v1)

Published 20 Sep 2015 in stat.ML

Abstract: In this paper we develop a statistical theory and an implementation of deep learning models. We show that an elegant variable splitting scheme for the alternating direction method of multipliers optimises a deep learning objective. We allow for non-smooth non-convex regularisation penalties to induce sparsity in parameter weights. We provide a link between traditional shallow layer statistical models such as principal component and sliced inverse regression and deep layer models. We also define the degrees of freedom of a deep learning predictor and a predictive MSE criteria to perform model selection for comparing architecture designs. We focus on deep multiclass logistic learning although our methods apply more generally. Our results suggest an interesting and previously under-exploited relationship between deep learning and proximal splitting techniques. To illustrate our methodology, we provide a multi-class logit classification analysis of Fisher's Iris data where we illustrate the convergence of our algorithm. Finally, we conclude with directions for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nicholas G. Polson (49 papers)
  2. Brandon T. Willard (6 papers)
  3. Massoud Heidari (3 papers)
Citations (5)