Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colored Non-Crossing Euclidean Steiner Forest (1509.05681v2)

Published 18 Sep 2015 in cs.CG

Abstract: Given a set of $k$-colored points in the plane, we consider the problem of finding $k$ trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For $k=1$, this is the well-known Euclidean Steiner tree problem. For general $k$, a $k\rho$-approximation algorithm is known, where $\rho \le 1.21$ is the Steiner ratio. We present a PTAS for $k=2$, a $(5/3+\varepsilon)$-approximation algorithm for $k=3$, and two approximation algorithms for general~$k$, with ratios $O(\sqrt n \log k)$ and $k+\varepsilon$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Sergey Bereg (30 papers)
  2. Krzysztof Fleszar (10 papers)
  3. Philipp Kindermann (48 papers)
  4. Sergey Pupyrev (44 papers)
  5. Joachim Spoerhase (30 papers)
  6. Alexander Wolff (73 papers)
Citations (12)