Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riesz Transform Characterizations of Hardy Spaces Associated to Degenerate Elliptic Operators (1509.05479v1)

Published 18 Sep 2015 in math.CA and math.FA

Abstract: Let $w$ be a Muckenhoupt $A_2(\mathbb{R}n)$ weight and $L_w:=-w{-1}\mathop\mathrm{div}(A\nabla)$ the degenerate elliptic operator on the Euclidean space $\mathbb{R}n$. In this article, the authors establish the Riesz transform characterization of the Hardy space $H_{L_w}p(\mathbb{R}n)$ associated with $L_w$, for $w\in A_{q}(\mathbb{R}n)$ and $w{-1}\in A_{2-\frac{2}{n}}(\mathbb{R}n)$ with $n\geq 3$, $q\in[1,2]$ and $p\in(q(\frac{1}{r}+\frac{q-1}{2}+\frac{1}{n}){-1},1]$ if, for some $r\in[1,\,2)$, ${tL_w e{-tL_w}}_{t\geq 0}$ satisfies the weighted $Lr-L2$ full off-diagonal estimate.

Summary

We haven't generated a summary for this paper yet.