Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Social Networks via Friend Recommendations (1509.05160v2)

Published 17 Sep 2015 in cs.SI

Abstract: A social network grows over a period of time with the formation of new connections and relations. In recent years we have witnessed a massive growth of online social networks like Facebook, Twitter etc. So it has become a problem of extreme importance to know the destiny of these networks. Thus predicting the evolution of a social network is a question of extreme importance. A good model for evolution of a social network can help in understanding the properties responsible for the changes occurring in a network structure. In this paper we propose such a model for evolution of social networks. We model the social network as an undirected graph where nodes represent people and edges represent the friendship between them. We define the evolution process as a set of rules which resembles very closely to how a social network grows in real life. We simulate the evolution process and show, how starting from an initial network, a network evolves using this model. We also discuss how our model can be used to model various complex social networks other than online social networks like political networks, various organizations etc..

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amit Kumar Verma (5 papers)
  2. Manjish Pal (10 papers)
Citations (5)