Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Background-tracking Acoustic Features for Genre Identification of Broadcast Shows (1509.04934v1)

Published 16 Sep 2015 in cs.SD

Abstract: This paper presents a novel method for extracting acoustic features that characterise the background environment in audio recordings. These features are based on the output of an alignment that fits multiple parallel background--based Constrained Maximum Likelihood Linear Regression transformations asynchronously to the input audio signal. With this setup, the resulting features can track changes in the audio background like appearance and disappearance of music, applause or laughter, independently of the speakers in the foreground of the audio. The ability to provide this type of acoustic description in audiovisual data has many potential applications, including automatic classification of broadcast archives or improving automatic transcription and subtitling. In this paper, the performance of these features in a genre identification task in a set of 332 BBC shows is explored. The proposed background--tracking features outperform short--term Perceptual Linear Prediction features in this task using Gaussian Mixture Model classifiers (62% vs 72% accuracy). The use of more complex classifiers, Hidden Markov Models and Support Vector Machines, increases the performance of the system with the novel background--tracking features to 79% and 81% in accuracy respectively.

Citations (12)

Summary

We haven't generated a summary for this paper yet.