Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-scale analysis of Zipf's law in English texts (1509.04486v1)

Published 15 Sep 2015 in stat.AP and physics.soc-ph

Abstract: Despite being a paradigm of quantitative linguistics, Zipf's law for words suffers from three main problems: its formulation is ambiguous, its validity has not been tested rigorously from a statistical point of view, and it has not been confronted to a representatively large number of texts. So, we can summarize the current support of Zipf's law in texts as anecdotic. We try to solve these issues by studying three different versions of Zipf's law and fitting them to all available English texts in the Project Gutenberg database (consisting of more than 30000 texts). To do so we use state-of-the art tools in fitting and goodness-of-fit tests, carefully tailored to the peculiarities of text statistics. Remarkably, one of the three versions of Zipf's law, consisting of a pure power-law form in the complementary cumulative distribution function of word frequencies, is able to fit more than 40% of the texts in the database (at the 0.05 significance level), for the whole domain of frequencies (from 1 to the maximum value) and with only one free parameter (the exponent).

Summary

We haven't generated a summary for this paper yet.