Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sharp Oracle Inequalities for Square Root Regularization

Published 14 Sep 2015 in math.ST and stat.TH | (1509.04093v2)

Abstract: We study a set of regularization methods for high-dimensional linear regression models. These penalized estimators have the square root of the residual sum of squared errors as loss function, and any weakly decomposable norm as penalty function. This fit measure is chosen because of its property that the estimator does not depend on the unknown standard deviation of the noise. On the other hand, a generalized weakly decomposable norm penalty is very useful in being able to deal with different underlying sparsity structures. We can choose a different sparsity inducing norm depending on how we want to interpret the unknown parameter vector $\beta$. Structured sparsity norms, as defined in Micchelli et al. [18], are special cases of weakly decomposable norms, therefore we also include the square root LASSO (Belloni et al. [3]), the group square root LASSO (Bunea et al. [10]) and a new method called the square root SLOPE (in a similar fashion to the SLOPE from Bogdan et al. [6]). For this collection of estimators our results provide sharp oracle inequalities with the Karush-Kuhn-Tucker conditions. We discuss some examples of estimators. Based on a simulation we illustrate some advantages of the square root SLOPE.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.