Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lazy Factored Inference for Functional Probabilistic Programming (1509.03564v1)

Published 11 Sep 2015 in cs.AI

Abstract: Probabilistic programming provides the means to represent and reason about complex probabilistic models using programming language constructs. Even simple probabilistic programs can produce models with infinitely many variables. Factored inference algorithms are widely used for probabilistic graphical models, but cannot be applied to these programs because all the variables and factors have to be enumerated. In this paper, we present a new inference framework, lazy factored inference (LFI), that enables factored algorithms to be used for models with infinitely many variables. LFI expands the model to a bounded depth and uses the structure of the program to precisely quantify the effect of the unexpanded part of the model, producing lower and upper bounds to the probability of the query.

Citations (1)

Summary

We haven't generated a summary for this paper yet.