Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Similarity-based semi-local estimation of EMOS models (1509.03521v1)

Published 11 Sep 2015 in stat.AP and physics.ao-ph

Abstract: Weather forecasts are typically given in the form of forecast ensembles obtained from multiple runs of numerical weather prediction models with varying initial conditions and physics parameterizations. Such ensemble predictions tend to be biased and underdispersive and thus require statistical postprocessing. In the ensemble model output statistics (EMOS) approach, a probabilistic forecast is given by a single parametric distribution with parameters depending on the ensemble members. This article proposes two semi-local methods for estimating the EMOS coefficients where the training data for a specific observation station are augmented with corresponding forecast cases from stations with similar characteristics. Similarities between stations are determined using either distance functions or clustering based on various features of the climatology, forecast errors, ensemble predictions and locations of the observation stations. In a case study on wind speed over Europe with forecasts from the Grand Limited Area Model Ensemble Prediction System, the proposed similarity-based semi-local models show significant improvement in predictive performance compared to standard regional and local estimation methods. They further allow for estimating complex models without numerical stability issues and are computationally more efficient than local parameter estimation.

Summary

We haven't generated a summary for this paper yet.