Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local structure can identify and quantify influential global spreaders in large scale social networks (1509.03484v5)

Published 11 Sep 2015 in physics.soc-ph, cs.CY, cs.DS, and cs.SI

Abstract: Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on social network is a global process, it is commonly believed that measuring the influence of nodes inevitably requires the knowledge of the entire network. Employing percolation theory, we show that the spreading process displays a nucleation behavior: once a piece of information spread from the seeds to more than a small characteristic number of nodes, it reaches a point of no return and will quickly reach the percolation cluster, regardless of the entire network structure, otherwise the spreading will be contained locally. Thus, we find that, without the knowledge of entire network, any nodes' global influence can be accurately measured using this characteristic number, which is independent of the network size. This motivates an efficient algorithm with constant time complexity on the long standing problem of best seed spreaders selection, with performance remarkably close to the true optimum.

Citations (79)

Summary

We haven't generated a summary for this paper yet.