Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relational reasoning via probabilistic coupling (1509.03476v2)

Published 11 Sep 2015 in cs.LO and cs.PL

Abstract: Probabilistic coupling is a powerful tool for analyzing pairs of probabilistic processes. Roughly, coupling two processes requires finding an appropriate witness process that models both processes in the same probability space. Couplings are powerful tools proving properties about the relation between two processes, include reasoning about convergence of distributions and stochastic dominance---a probabilistic version of a monotonicity property. While the mathematical definition of coupling looks rather complex and cumbersome to manipulate, we show that the relational program logic pRHL---the logic underlying the EasyCrypt cryptographic proof assistant---already internalizes a generalization of probabilistic coupling. With this insight, constructing couplings is no harder than constructing logical proofs. We demonstrate how to express and verify classic examples of couplings in pRHL, and we mechanically verify several couplings in EasyCrypt.

Citations (34)

Summary

We haven't generated a summary for this paper yet.