Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Convex Combination of APA and ZA-APA algorithms for Sparse System Identification (1509.03203v1)

Published 10 Sep 2015 in cs.SY, cs.IT, and math.IT

Abstract: In general, one often encounters the systems that have sparse impulse response, with time varying system sparsity. Conventional adaptive filters which perform well for identification of non-sparse systems fail to exploit the system sparsity for improving the performance as the sparsity level increases. This paper presents a new approach that uses an adaptive convex combination of Affine Projection Algorithm (APA) and Zero-attracting Affine Projection Algorithm (ZA-APA)algorithms for identifying the sparse systems, which adapts dynamically to the sparsity of the system. Thus works well in both sparse and non-sparse environments and also the usage of affine projection makes it robust against colored input. It is shown that, for non-sparse systems, the proposed combination always converges to the APA algorithm, while for semi-sparse systems, it converges to a solution that produces lesser steady state EMSE than produced by either of the component filters. For highly sparse systems, depending on the value of the proportionality constant ($\rho$) in ZA-APA algorithm, the proposed combined filter may either converge to the ZA-APA based filter or produce a solution similar to the semi-sparse case i.e., outerperforms both the constituent filters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.