Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

G-groups of Cohen-Macaulay Rings with $n$-Cluster Tilting Objects (1509.02978v5)

Published 10 Sep 2015 in math.AC and math.KT

Abstract: Let $(R, \mathfrak{m}, k)$ denote a local Cohen-Macaulay ring such that the category of maximal Cohen-Macaulay $R$-modules $\textbf{mcm}\ R$ contains an $n$-cluster tilting object $L$. In this paper, we compute $G_1(R) := K_1(\textbf{mod}\ R)$ explicitly as a direct sum of a free group and a specified quotient of $\text{aut}R(L){\text{ab}}$ when $R$ is a $k$-algebra and $k$ is algebraically closed (and $\text{char}(k)\neq 2$). Moreover, we give some explicit computations of $\text{aut}R(L){\text{ab}}$ and $G_1(R)$ for certain hypersurface singularities.

Summary

We haven't generated a summary for this paper yet.