Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence (1509.02022v1)

Published 7 Sep 2015 in math.PR and math.AP

Abstract: We consider an individual-based spatially structured population for Darwinian evolution in an asexual population. The individuals move randomly on a bounded continuous space according to a reflected brownian motion. The dynamics involves also a birth rate, a density-dependent logistic death rate and a probability of mutation at each birth event. We study the convergence of the microscopic process when the population size grows to $+\infty$ and the mutation probability decreases to $0$. We prove a convergence towards a jump process that jumps in the infinite dimensional space of the stable spatial distributions. The proof requires specific studies of the microscopic model. First, we examine the large deviation principle around the deterministic large population limit of the microscopic process. Then, we find a lower bound on the exit time of a neighborhood of a stationary spatial distribution. Finally, we study the extinction time of the branching diffusion processes that approximate small size populations.

Summary

We haven't generated a summary for this paper yet.