Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Drawing graphs with vertices and edges in convex position (1509.01981v2)

Published 7 Sep 2015 in math.CO, cs.CG, and cs.DM

Abstract: A graph has strong convex dimension $2$, if it admits a straight-line drawing in the plane such that its vertices are in convex position and the midpoints of its edges are also in convex position. Halman, Onn, and Rothblum conjectured that graphs of strong convex dimension $2$ are planar and therefore have at most $3n-6$ edges. We prove that all such graphs have at most $2n-3$ edges while on the other hand we present a class of non-planar graphs of strong convex dimension $2$. We also give lower bounds on the maximum number of edges a graph of strong convex dimension $2$ can have and discuss variants of this graph class. We apply our results to questions about large convexly independent sets in Minkowski sums of planar point sets, that have been of interest in recent years.

Citations (4)

Summary

We haven't generated a summary for this paper yet.