Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectrum density of large sparse random matrices associated to neural networks (1509.01893v1)

Published 7 Sep 2015 in q-bio.NC and cond-mat.dis-nn

Abstract: The eigendecomposition of the coupling matrix of large biological networks is central to the study of the dynamics of these networks. For neural networks, this matrix should reflect the topology of the network and conform with Dale's law which states that a neuron can have only all excitatory or only all inhibitory output connections, i.e., coefficients of one column of the coupling matrix must all have the same sign. The eigenspectrum density has been determined before for dense matrices $J_{ij}$, when several populations are considered. However, the expressions were derived under the assumption of dense connectivity, whereas neural circuits have sparse connections. Here, we followed mean-field approaches in order to come up with exact self-consistent expressions for the spectrum density in the limit of sparse matrices for both symmetric and neural network matrices. Furthermore we introduced approximations that allow for good numerical evaluation of the density. Finally, we studied the phenomenology of localization properties of the eigenvectors.

Summary

We haven't generated a summary for this paper yet.