Semisimplicity of certain representation categories
Abstract: We exhibit a correspondence between subcategories of modules over an algebra and sub-bimodules of the dual of that algebra. We then prove that the semisimplicity of certain such categories is equivalent to the existence of a Peter-Weyl decomposition of the corresponding sub-bimodule. Finally, we use this technique to establish the semisimplicity of certain finite-dimensional representations of the quantum double of sl_2 for generic q.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.