Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal Distances for Subtree Transfer Operations in Binary Trees (1509.00669v1)

Published 2 Sep 2015 in math.CO and cs.DS

Abstract: Three standard subtree transfer operations for binary trees, used in particular for phylogenetic trees, are: tree bisection and reconnection ($TBR$), subtree prune and regraft ($SPR$) and rooted subtree prune and regraft ($rSPR$). For a pair of leaf-labelled binary trees with $n$ leaves, the maximum number of such moves required to transform one into the other is $n-\Theta(\sqrt{n})$, extending a result of Ding, Grunewald and Humphries. We show that if the pair is chosen uniformly at random, then the expected number of moves required to transfer one into the other is $n-\Theta(n{2/3})$. These results may be phrased in terms of agreement forests: we also give extensions for more than two binary trees.

Citations (14)

Summary

We haven't generated a summary for this paper yet.