Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finitistic dimension conjecture and radical-power extensions (1509.00125v1)

Published 1 Sep 2015 in math.RT and math.RA

Abstract: The finitistic dimension conjecture asserts that any finite-dimensional algebra over a field should have finite finitistic dimension. Recently, this conjecture is reduced to studying finitistic dimensions for extensions of algebras. In this paper, we investigate those extensions of Artin algebras in which some radical-power of smaller algebras is a one-sided ideal in bigger algebras. Our results, however, are formulated more generally for an arbitrary ideal: Let $B\subseteq A$ be an extension of Artin algebras and $I$ an ideal of $B$ such that the full subcategory of $B/I$-modules is $B$-syzygy-finite. Then: (1) If the extension is right-bounded (for example, proj.dim$(A_B)$ is finite), $I A\, rad(B)\subseteq B$ and fin.dim$(A)$ is finite, then fin.dim$(B)$ is finite. (2) If $I\, rad(B)$ is a left ideal of $A$ and $A$ is torsionless-finite, then fin.dim$(B)$ is finite. Particularly, if $I$ is specified to a power of the radical of $B$, then our results not only generalize some ones in the literature (see Corollaries 1.3 and 1.4), but also provide some completely new ways to detect algebras of finite finitistic dimensions.

Summary

We haven't generated a summary for this paper yet.