Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Sensor Slope Change Detection (1509.00114v2)

Published 1 Sep 2015 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We develop a mixture procedure for multi-sensor systems to monitor data streams for a change-point that causes a gradual degradation to a subset of the streams. Observations are assumed to be initially normal random variables with known constant means and variances. After the change-point, observations in the subset will have increasing or decreasing means. The subset and the rate-of-changes are unknown. Our procedure uses a mixture statistics, which assumes that each sensor is affected by the change-point with probability $p_0$. Analytic expressions are obtained for the average run length (ARL) and the expected detection delay (EDD) of the mixture procedure, which are demonstrated to be quite accurate numerically. We establish the asymptotic optimality of the mixture procedure. Numerical examples demonstrate the good performance of the proposed procedure. We also discuss an adaptive mixture procedure using empirical Bayes. This paper extends our earlier work on detecting an abrupt change-point that causes a mean-shift, by tackling the challenges posed by the non-stationarity of the slope-change problem.

Citations (17)

Summary

We haven't generated a summary for this paper yet.