Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Smoothing Algorithms for Nonsmooth Composite Convex Minimization (1509.00106v5)

Published 1 Sep 2015 in math.OC and stat.ML

Abstract: We propose an adaptive smoothing algorithm based on Nesterov's smoothing technique in \cite{Nesterov2005c} for solving "fully" nonsmooth composite convex optimization problems. Our method combines both Nesterov's accelerated proximal gradient scheme and a new homotopy strategy for smoothness parameter. By an appropriate choice of smoothing functions, we develop a new algorithm that has the $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$-worst-case iteration-complexity while preserves the same complexity-per-iteration as in Nesterov's method and allows one to automatically update the smoothness parameter at each iteration. Then, we customize our algorithm to solve four special cases that cover various applications. We also specify our algorithm to solve constrained convex optimization problems and show its convergence guarantee on a primal sequence of iterates. We demonstrate our algorithm through three numerical examples and compare it with other related algorithms.

Citations (28)

Summary

We haven't generated a summary for this paper yet.