Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Guided Sampling Optimization for Low-dimensional Problems (1508.07741v1)

Published 31 Aug 2015 in cs.NE and stat.ML

Abstract: Optimization of very expensive black-box functions requires utilization of maximum information gathered by the process of optimization. Model Guided Sampling Optimization (MGSO) forms a more robust alternative to Jones' Gaussian-process-based EGO algorithm. Instead of EGO's maximizing expected improvement, the MGSO uses sampling the probability of improvement which is shown to be helpful against trapping in local minima. Further, the MGSO can reach close-to-optimum solutions faster than standard optimization algorithms on low dimensional or smooth problems.

Summary

We haven't generated a summary for this paper yet.