Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Word Representations, Tree Models and Syntactic Functions (1508.07709v2)

Published 31 Aug 2015 in cs.CL, cs.LG, and stat.ML

Abstract: Word representations induced from models with discrete latent variables (e.g.\ HMMs) have been shown to be beneficial in many NLP applications. In this work, we exploit labeled syntactic dependency trees and formalize the induction problem as unsupervised learning of tree-structured hidden Markov models. Syntactic functions are used as additional observed variables in the model, influencing both transition and emission components. Such syntactic information can potentially lead to capturing more fine-grain and functional distinctions between words, which, in turn, may be desirable in many NLP applications. We evaluate the word representations on two tasks -- named entity recognition and semantic frame identification. We observe improvements from exploiting syntactic function information in both cases, and the results rivaling those of state-of-the-art representation learning methods. Additionally, we revisit the relationship between sequential and unlabeled-tree models and find that the advantage of the latter is not self-evident.

Citations (3)

Summary

We haven't generated a summary for this paper yet.