Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of nonstationary Schrödinger type equations with periodic coefficients (1508.07641v1)

Published 30 Aug 2015 in math.AP

Abstract: In $L_2(\mathbb{R}d;{\mathbb C}n)$ we consider selfadjoint strongly elliptic second order differential operators ${\mathcal A}\varepsilon$ with periodic coefficients depending on ${\mathbf x}/\varepsilon$. We study the behavior of the operator exponential $\exp(-i {\mathcal A}\varepsilon \tau)$, $\tau \in {\mathbb R}$, for small $\varepsilon$. Approximations for this exponential in the $(Hs\to L_2)$-operator norm with a suitable $s$ are obtained. The results are applied to study the behavior of the solution ${\mathbf u}\varepsilon$ of the Cauchy problem for the Schr\"odinger type equation $i \partial\tau {\mathbf u}\varepsilon = {\mathcal A}\varepsilon {\mathbf u}_\varepsilon$.

Summary

We haven't generated a summary for this paper yet.