Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The classification of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules (1508.07203v1)

Published 28 Aug 2015 in math.RT

Abstract: In this paper we classify all the cyclic finite dimensional indecomposable\ modules of the perfect Lie algebras $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}{n+1}$, given by the semidirect sum of the simple Lie algebra $A_n$ with its standard representation. Furthermore, using the embeddings of the Lie algebras $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}{n+1}$ in $\mathfrak{sl}(n+2)$, we show that any finite dimensional irreducible module of $\mathfrak{sl}(n+2)$ restricted to $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}{n+1}$ is a cyclic module and that any cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}{n+1}$--modules can be constructed as quotient module of the restriction to $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}{n+1}$ of some finite dimensional irreducible $\mathfrak{sl}(n+2)$--modules. This explicit realization of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}{n+1}$--modules plays a role in their classification.

Summary

We haven't generated a summary for this paper yet.