Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schrödinger Operators With $A_\infty$ Potentials (1508.07150v1)

Published 28 Aug 2015 in math.AP, math-ph, and math.MP

Abstract: We study the heat kernel $p(x,y,t)$ associated to the real Schr\"odinger operator $H = -\Delta + V$ on $L2(\mathbb{R}n)$, $n \geq 1$. Our main result is a pointwise upper bound on $p$ when the potential $V \in A_\infty$. In the case that $V\in RH_\infty$, we also prove a lower bound. Additionally, we compute $p$ explicitly when $V$ is a quadratic polynomial.

Summary

We haven't generated a summary for this paper yet.