Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum groups, quantum tori, and the Grothendieck-Springer resolution (1508.07057v3)

Published 28 Aug 2015 in math.QA, math-ph, math.MP, and math.RT

Abstract: We construct an algebra embedding of the quantum group $U_q(\mathfrak{g})$ into the quantum coordinate ring $\mathcal{O}q[G{w_0,w_0}/H]$ of the reduced big double Bruhat cell in $G$. This embedding factors through the Heisenberg double $\mathcal{H}_q$ of the quantum Borel subalgebra $U{\geq0}$, which we relate to $\mathcal{O}_q[G]$ via twisting by the longest element of the quantum Weyl group. Our construction is inspired by the Poisson geometry of the Grothendieck-Springer resolution studied by Evens and Lu, and the quantum Beilinson-Bernstein theorem investigated by Backelin, Kremnitzer, and Tanisaki.

Summary

We haven't generated a summary for this paper yet.