Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains (1508.06450v1)
Abstract: We consider the semilinear elliptic equation $-\Delta u =\lambda f(u)$ in a smooth bounded domain $\Omega$ of $R{n}$ with Dirichielt boundary condition, where $f$ is a $C{1}$ positive and nondeccreasing function in $[0,\infty)$ such that $\frac{f(t)}{t}\rightarrow\infty$ as $t\rightarrow\infty$. When $\Omega$ is an arbitrary domain and $f$ is not necessarily convex, the boundedness of the extremal solution $u{*}$ is known only for $n= 2$, established by X. Cabr\'{e} \cite{C1}. In this paper, we prove this for higher dimensions depending on the nonlinearity $f$. In particular, we prove that if $$\frac{1}{2}<\beta_{-}:=\liminf_{t\rightarrow\infty} \frac{f'(t)F(t)}{f(t){2}}\leq \beta_{+}:=\limsup_{t\rightarrow\infty} \frac{f'(t)F(t)}{f(t){2}}<\infty$$ where $F(t)=\int_{0}{t}f(s)ds$, then $u{*}\in L{\infty}(\Omega)$, for $n\leq 6$. Also, if $\beta_{-}=\beta_{+}>\frac{1}{2}$ or $\frac{1}{2}<\beta_{-}\leq\beta_{+}<\frac{7}{10}$, then $u{*}\in L{\infty}(\Omega)$, for $n\leq 9$. Moreover, if $\beta_{-}>\frac{1}{2}$ then $u{*}\in H{1}_{0}(\Omega)$ for $n\geq 2$.