Papers
Topics
Authors
Recent
Search
2000 character limit reached

A fully data-driven method to identify (correlated) changes in diachronic corpora

Published 26 Aug 2015 in cs.CL, cs.IR, and stat.AP | (1508.06374v2)

Abstract: In this paper, a method for measuring synchronic corpus (dis-)similarity put forward by Kilgarriff (2001) is adapted and extended to identify trends and correlated changes in diachronic text data, using the Corpus of Historical American English (Davies 2010a) and the Google Ngram Corpora (Michel et al. 2010a). This paper shows that this fully data-driven method, which extracts word types that have undergone the most pronounced change in frequency in a given period of time, is computationally very cheap and that it allows interpretations of diachronic trends that are both intuitively plausible and motivated from the perspective of information theory. Furthermore, it demonstrates that the method is able to identify correlated linguistic changes and diachronic shifts that can be linked to historical events. Finally, it can help to improve diachronic POS tagging and complement existing NLP approaches. This indicates that the approach can facilitate an improved understanding of diachronic processes in language change.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.