Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces (1508.06062v1)

Published 25 Aug 2015 in math.MG and math.CA

Abstract: We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 inThirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above result we define a new distance on the Heisenberg group that is bounded by the Carnot-Carath\'eodory distance, that preserves the Ahlfors-regularity, and such that the Carnot-Carath\'eodory distance and the new distance are biLipschitz equivalent on no set of positive measure. This construction works more generally in any Ahlfors-regular metric space where one can make suitable shortcuts. Such spaces include for example all snowflaked Ahlfors-regular metric spaces. With the same techniques we also provide an example of a left-invariant distance on the Heisenberg group biLipschitz to the Carnot-Carath\'eodory distance for which no blow-up admits nontrivial dilations.

Summary

We haven't generated a summary for this paper yet.