Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shapes From Pixels (1508.05789v1)

Published 24 Aug 2015 in cs.IT and math.IT

Abstract: Continuous-domain visual signals are usually captured as discrete (digital) images. This operation is not invertible in general, in the sense that the continuous-domain signal cannot be exactly reconstructed based on the discrete image, unless it satisfies certain constraints (\emph{e.g.}, bandlimitedness). In this paper, we study the problem of recovering shape images with smooth boundaries from a set of samples. Thus, the reconstructed image is constrained to regenerate the same samples (consistency), as well as forming a shape (bilevel) image. We initially formulate the reconstruction technique by minimizing the shape perimeter over the set of consistent binary shapes. Next, we relax the non-convex shape constraint to transform the problem into minimizing the total variation over consistent non-negative-valued images. We also introduce a requirement (called reducibility) that guarantees equivalence between the two problems. We illustrate that the reducibility property effectively sets a requirement on the minimum sampling density. One can draw analogy between the reducibility property and the so-called restricted isometry property (RIP) in compressed sensing which establishes the equivalence of the $\ell_0$ minimization with the relaxed $\ell_1$ minimization. We also evaluate the performance of the relaxed alternative in various numerical experiments.

Citations (24)

Summary

We haven't generated a summary for this paper yet.