Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to detect an oddball target (1508.05572v2)

Published 23 Aug 2015 in cs.IT and math.IT

Abstract: We consider the problem of detecting an odd process among a group of Poisson point processes, all having the same rate except the odd process. The actual rates of the odd and non-odd processes are unknown to the decision maker. We consider a time-slotted sequential detection scenario where, at the beginning of each slot, the decision maker can choose which process to observe during that time slot. We are interested in policies that satisfy a given constraint on the probability of false detection. We propose a generalised likelihood ratio based sequential policy which, via suitable thresholding, can be made to satisfy the given constraint on the probability of false detection. Further, we show that the proposed policy is asymptotically optimal in terms of the conditional expected stopping time among all policies that satisfy the constraint on the probability of false detection. The asymptotic is as the probability of false detection is driven to zero. We apply our results to a particular visual search experiment studied recently by neuroscientists. Our model suggests a neuronal dissimilarity index for the visual search task. The neuronal dissimilarity index, when applied to visual search data from the particular experiment, correlates strongly with the behavioural data. However, the new dissimilarity index performs worse than some previously proposed neuronal dissimilarity indices. We explain why this may be attributed to the experiment conditons.

Citations (40)

Summary

We haven't generated a summary for this paper yet.