Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithm for Minimum Weight $(k,m)$-CDS Problem in Unit Disk Graph (1508.05515v2)

Published 22 Aug 2015 in cs.DM and cs.DS

Abstract: In a wireless sensor network, the virtual backbone plays an important role. Due to accidental damage or energy depletion, it is desirable that the virtual backbone is fault-tolerant. A fault-tolerant virtual backbone can be modeled as a $k$-connected $m$-fold dominating set ($(k,m)$-CDS for short). In this paper, we present a constant approximation algorithm for the minimum weight $(k,m)$-CDS problem in unit disk graphs under the assumption that $k$ and $m$ are two fixed constants with $m\geq k$. Prior to this work, constant approximation algorithms are known for $k=1$ with weight and $2\leq k\leq 3$ without weight. Our result is the first constant approximation algorithm for the $(k,m)$-CDS problem with general $k,m$ and with weight. The performance ratio is $(\alpha+2.5k\rho)$ for $k\geq 3$ and $(\alpha+2.5\rho)$ for $k=2$, where $\alpha$ is the performance ratio for the minimum weight $m$-fold dominating set problem and $\rho$ is the performance ratio for the subset $k$-connected subgraph problem (both problems are known to have constant performance ratios.)

Citations (34)

Summary

We haven't generated a summary for this paper yet.