Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Very accurate approximations for the elliptic integrals of the second kind in terms of Stolarsky means (1508.05513v1)

Published 22 Aug 2015 in math.CA

Abstract: For $a,b>0$ with $a\neq b$, the Stolarsky means are defined by% \begin{equation*} S_{p,q}\left(a,b\right) =\left({\dfrac{q(a{p}-b{p})}{p(a{q}-b{q})}}% \right) {1/(p-q)}\text{if}pq\left(p-q\right) \neq 0 \end{equation*}% and $S_{p,q}\left(a,b\right) $ is defined as its limits at $p=0$ or $q=0$ or $p=q$ if $pq\left(p-q\right) =0$. The complete elliptic integrals of the second kind $E$ is defined on $\left(0,1\right) $ by% \begin{equation*} E\left(r\right) =\int_{0}{\pi /2}\sqrt{1-r{2}\sin {2}t}dt. \end{equation*}% We prove that the functions% \begin{equation*} F\left(r\right) =\frac{1-\left(2/\pi \right) E\left(r\right)}{% 1-S_{11/4,7/4}\left(1,r{\prime}\right)}\text{and}G\left(r\right) =% \frac{1-\left(2/\pi \right) E\left(r\right)}{1-S_{5/2,2}\left(1,r{\prime}\right)} \end{equation*}% are strictly decreasing and increasing on $\left(0,1\right) $, respectively, where $r{\prime}=\sqrt{1-r{2}}$. These yield some very accurate approximations for the complete elliptic integrals of the second kind, which greatly improve some known results.

Summary

We haven't generated a summary for this paper yet.