2000 character limit reached
Non-universal families of separable Banach spaces (1508.05059v1)
Published 20 Aug 2015 in math.FA
Abstract: We prove that if $ C $ is a family of separable Banach spaces which is analytic with respect to the Effros-Borel structure and none member of $ C $ is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for $ C $ but still not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.