Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds for the asymptotic normality of the maximum likelihood estimator using the Delta method (1508.04948v3)

Published 20 Aug 2015 in math.ST and stat.TH

Abstract: The asymptotic normality of the Maximum Likelihood Estimator (MLE) is a cornerstone of statistical theory. In the present paper, we provide sharp explicit upper bounds on Zolotarev-type distances between the exact, unknown distribution of the MLE and its limiting normal distribution. Our approach to this fundamental issue is based on a sound combination of the Delta method, Stein's method, Taylor expansions and conditional expectations, for the classical situations where the MLE can be expressed as a function of a sum of independent and identically distributed terms. This encompasses in particular the broad exponential family of distributions.

Summary

We haven't generated a summary for this paper yet.