Subgroups of Relatively Hyperbolic Groups of Bredon Cohomological Dimension 2
Abstract: A remarkable result of Gersten states that the class of hyperbolic groups of cohomological dimension $2$ is closed under taking finitely presented (or more generally $FP_2$) subgroups. We prove the analogous result for relatively hyperbolic groups of Bredon cohomological dimension $2$ with respect to the family of parabolic subgroups. A class of groups where our result applies consists of $C'(1/6)$ small cancellation products. The proof relies on an algebraic approach to relative homological Dehn functions, and a characterization of relative hyperbolicity in the framework of finiteness properties over Bredon modules and homological Isoperimetric inequalities.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.