Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the characterization of integrable systems via the Haantjes geometry (1508.04629v2)

Published 19 Aug 2015 in math-ph, math.MP, nlin.SI, and physics.class-ph

Abstract: We prove that the existence of a Haantjes structure is a necessary and sufficient condition for a Hamiltonian system to be integrable in the Liouville-Arnold sense. This structure, expressed in terms of suitable operators whose Haantjes torsion vanishes, encodes the main features of the notion of integrability, and in particular, under certain hypotheses, allows to solve the problem of determining separation of variables for a given system in an algorithmic way. As an application of the theory, we prove theorems ensuring the existence of a large class of completely integrable systems in the Euclidean plane, constructed starting from a prescribed Haantjes structure. At the same time, we also show that some of the most classical examples of Hamiltonian systems in n dimensions, as for instance the Gantmacher and St\"ackel classes, all possess a natural Haantjes structure.

Summary

We haven't generated a summary for this paper yet.