Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multifractal analysis of electronic states on random Voronoi-Delaunay lattices (1508.04284v2)

Published 18 Aug 2015 in cond-mat.dis-nn

Abstract: We consider the transport of non-interacting electrons on two- and three-dimensional random Voronoi-Delaunay lattices. It was recently shown that these topologically disordered lattices feature strong disorder anticorrelations between the coordination numbers that qualitatively change the properties of continuous and first-order phase transitions. To determine whether or not these unusual features also influence Anderson localization, we study the electronic wave functions by multifractal analysis and finite-size scaling. We observe only localized states for all energies in the two-dimensional system. In three dimensions, we find two Anderson transitions between localized and extended states very close to the band edges. The critical exponent of the localization length is about 1.6. All these results agree with the usual orthogonal universality class. Additional generic energetic randomness introduced via random potentials does not lead to qualitative changes but allows us to obtain a phase diagram by varying the strength of these potentials.

Summary

We haven't generated a summary for this paper yet.