Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Okounkov bodies associated to pseudoeffective divisors (1508.03922v5)

Published 17 Aug 2015 in math.AG

Abstract: An Okounkov body is a convex subset in Euclidean space associated to a big divisor on a smooth projective variety with respect to an admissible flag. In this paper, we introduce two convex bodies associated to pseudoeffective divisors, called the valuative Okounkov bodies and the limiting Okounkov bodies, and show that these convex bodies reflect the asymptotic properties of pseudoeffective divisors as in the case with big divisors. Our results extend the works of Lazarsfeld-Musta\c{t}\u{a} and Kaveh-Khovanskii. For this purpose, we define and study special subvarieties, called the Nakayama subvarieties and the positive volume subvarieties, associated to pseudoeffective divisors.

Summary

We haven't generated a summary for this paper yet.