Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study on Regularization Strategies for Embedding-based Neural Networks (1508.03721v1)

Published 15 Aug 2015 in cs.CL and cs.LG

Abstract: This paper aims to compare different regularization strategies to address a common phenomenon, severe overfitting, in embedding-based neural networks for NLP. We chose two widely studied neural models and tasks as our testbed. We tried several frequently applied or newly proposed regularization strategies, including penalizing weights (embeddings excluded), penalizing embeddings, re-embedding words, and dropout. We also emphasized on incremental hyperparameter tuning, and combining different regularizations. The results provide a picture on tuning hyperparameters for neural NLP models.

Citations (27)

Summary

We haven't generated a summary for this paper yet.