Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biases in differential expression analysis of RNA-seq data: A matter of replicate type (1508.03719v1)

Published 15 Aug 2015 in q-bio.GN

Abstract: In differential expression (DE) analysis of RNA-seq count data, it is known that genes with a larger read number are more likely to be differentially expressed. This bias has a profound effect on the subsequent Gene Ontology (GO) analysis by perturbing the ranks of gene-sets. Another known bias is that the commonly used parametric DE analysis methods (e.g., edgeR, DESeq and baySeq) tend to yield more DE genes as the sequencing depth is increased. We nevertheless show that these biases are in fact confined to data of the technical replicate type. We also show the GO or gene-set enrichment analysis methods applied to technical replicate data result in considerable number of false positives. In conclusion, the current DE and enrichment analysis methods can be confidently used for biological replicate count data, while caution should be exercised when analysing technical replicate data.

Summary

We haven't generated a summary for this paper yet.