Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive independence sampler MCMC algorithm for infinite dimensional Bayesian inferences (1508.03283v2)

Published 13 Aug 2015 in math.NA, math.ST, stat.CO, and stat.TH

Abstract: Many scientific and engineering problems require to perform Bayesian inferences in function spaces, in which the unknowns are of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. In this work we develop an independence sampler based MCMC method for the infinite dimensional Bayesian inferences. We represent the proposal distribution as a mixture of a finite number of specially parametrized Gaussian measures. We show that under the chosen parametrization, the resulting MCMC algorithm is dimension independent. We also design an efficient adaptive algorithm to adjust the parameter values of the mixtures from the previous samples. Finally we provide numerical examples to demonstrate the efficiency and robustness of the proposed method, even for problems with multimodal posterior distributions.

Summary

We haven't generated a summary for this paper yet.