Hessian geometry and entanglement thermodynamics (1508.02538v1)
Abstract: We reconstruct entanglement thermodynamics by means of Hessian geometry, since this method exactly generalizes thermodynamics into much wider exponential family cases including quantum entanglement. Starting with the correct first law of entanglement thermodynamics, we derive that a proper choice of the Hessian potential leads to both of the entanglement entropy scaling for quantum critical systems and hyperbolic metric (or AdS space with imaginary time). We also derive geometric representation of the entanglement entropy in which the entropy is described as integration of local conserved current of information flowing across an entangling surface. We find that the entangling surface is equivalent to the domain boundary of the Hessian potential. This feature originates in a special property of critical systems in which we can identify the entanglement entropy with the Hessian potential after the second derivative by the canonical parameters, and this identification guarantees violation of extensive nature of the entropy.
Collections
Sign up for free to add this paper to one or more collections.