Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facts and Fabrications about Ebola: A Twitter Based Study (1508.02079v1)

Published 9 Aug 2015 in cs.SI and cs.CY

Abstract: Microblogging websites like Twitter have been shown to be immensely useful for spreading information on a global scale within seconds. The detrimental effect, however, of such platforms is that misinformation and rumors are also as likely to spread on the network as credible, verified information. From a public health standpoint, the spread of misinformation creates unnecessary panic for the public. We recently witnessed several such scenarios during the outbreak of Ebola in 2014 [14, 1]. In order to effectively counter the medical misinformation in a timely manner, our goal here is to study the nature of such misinformation and rumors in the United States during fall 2014 when a handful of Ebola cases were confirmed in North America. It is a well known convention on Twitter to use hashtags to give context to a Twitter message (a tweet). In this study, we collected approximately 47M tweets from the Twitter streaming API related to Ebola. Based on hashtags, we propose a method to classify the tweets into two sets: credible and speculative. We analyze these two sets and study how they differ in terms of a number of features extracted from the Twitter API. In conclusion, we infer several interesting differences between the two sets. We outline further potential directions to using this material for monitoring and separating speculative tweets from credible ones, to enable improved public health information.

Citations (16)

Summary

We haven't generated a summary for this paper yet.