Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Boosting: Joint Feature Selection and Analysis Dictionary Learning in Hierarchy (1508.01887v2)

Published 8 Aug 2015 in cs.CV, cs.LG, and cs.NE

Abstract: This work investigates how the traditional image classification pipelines can be extended into a deep architecture, inspired by recent successes of deep neural networks. We propose a deep boosting framework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we construct a dictionary of filters by combining the filters from the lower layer, and iteratively optimize the image representation with a joint discriminative-generative formulation, i.e. minimization of empirical classification error plus regularization of analysis image generation over training images. For optimization, we perform two iterating steps: i) to minimize the classification error, select the most discriminative features using the gentle adaboost algorithm; ii) according to the feature selection, update the filters to minimize the regularization on analysis image representation using the gradient descent method. Once the optimization is converged, we learn the higher layer representation in the same way. Our model delivers several distinct advantages. First, our layer-wise optimization provides the potential to build very deep architectures. Second, the generated image representation is compact and meaningful. In several visual recognition tasks, our framework outperforms existing state-of-the-art approaches.

Citations (16)

Summary

We haven't generated a summary for this paper yet.